In this study, we described the properties of a thiazolylidene analog, A-716096, to elucidate biochemical neurotransmitter release, electrophysiological activity and behavioral effects in vivo. A-716096 was found to potentiate ACh-evoked α7 nAChR currents in oocytes expressing rat or human α7 nAChRs, but did not potentiate other nAChR subtypes ($h\alpha4\beta2$ and $h\alpha3\beta4$) in FLIPR-based Ca²⁺ influx assays. A-716096 enhanced agonist-evoked phospho-ERK in PC12 cells as well as α7 nAChR-evoked [3H] NE release in SH-SY5Y cells. Like other $\alpha 7$ PAMs (NS1738, TQS and PNU-120596), A-716096 did not displace the binding of either [3H] MLA or [3H] A-585539 to rat cortical membranes. Co- or pre-application of A-716096 amplified choline-evoked α7-like current responses in hippocampal CA1 slices and enhanced synaptic inhibitory activity in dentate gyrus in electrophysiological studies. Consistent with in vitro data, in vivo administration of A-716096 in mice increased dose-dependently phosphorylation of the downstream signaling protein. CREB. In vivo evoked-potential EEG recordings revealed that A-716096 improved sensory gating in DBA2 mice, a strain that exhibits natural deficits on this pre-attention measure. Taken together, these results demonstrate that A-716096 is a valuable tool compound with which to further study mechanism of action and other physiological effects of PAMs including modulation of synaptic effects and signaling mechanisms critical for learning and memory.

doi:10.1016/j.bcp.2009.06.062

2.12

2,2-Dimethylcyclopropyl-benzamides: Novel positive allosteric modulators of $\alpha 7 \ nAChRs$

Hans Maag*, Daisy Joe Du Bois, David G. Loughhead, Jason Manka, Dinah Misner, Sunil Sahdeo, David B. Smith

Roche Palo Alto, LLC, 3431 Hillview Avenue; Palo Alto, CA 94304-1397, United States

Activation of α_7 nicotinic acetylcholine receptor (nAChR- α_7) has been shown by pre-clinical and clinical evidence to improve cognitive function and a number of partial or full agonists are in advanced clinical trials, among them GTS-21, EVP-6124, AZD-0328 and R34787/MEM3454. Positive allosteric modulators of this ion channel offer the option of enhancing the endogenous signal of acetylcholine while avoiding the rapid desensitization and long-lasting deactivation caused by agonists. A prototypic agent in this class is PNU-120596. The identification and early optimization of a novel series of 2,2-dimethylcyclopropyl-benzamides as positive modulators of the nAChR- α_7 channel is described.

doi:10.1016/j.bcp.2009.06.063

2.13

In vitro and in vivo characterization of PheTQS, a novel $\alpha 7$ nAChR positive allosteric modulator

James N.C. Kew^{1,*}, Selina Mok¹, Annette Weil¹, Caterina Virginio², Laura Castelletti², Eric Southam¹, Carol Jennings¹, Lee A. Dawson¹, Laurent P. Lacroix¹, Abbe Martyn¹, Simon Teague¹, Zeenat Atcha³, Darrel Pemberton³, Charlie Reavill¹, Mark Hill¹, Jackie Cilia¹, Kevin Choo⁴, Karen Stevens⁴, Andrew Lightfoot¹

¹ Neurosciences CEDD, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex, United Kingdom

 2 Screening and Compound Profiling, GlaxoSmithKline, Via Fleming 4, Verona, Italy

³ GlaxoSmithKline, Biopolis at One-North, 11 Biopolis Way, The Helios Building, #03-01/02, Singapore 138667, Singapore

⁴ University of Colorado Health Sciences Centre, 4200 East 9th Avenue, Denver, CO 80262, United States

PheTQS ((3aR, 4S, 9bS)-4-(4-methylphenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide,

WO2004098600) facilitated nicotine (10 µM)-evoked responses in GH4C1 cells stably expressing human α 7 nAChRs with a pEC₅₀ = 7.4 ± 0.2 and exhibited >30-fold selectivity vs. the 5-HT₃ receptor and $\alpha 4\beta 2$ and $\alpha 1$, $\alpha 3$ -containing nAChRs. PheTQS also facilitated ACh (300 µM)-evoked currents in rat cultured hippocampal neurons with a pEC₅₀ = 7.0 ± 0.2 to a maximum of 6191±955% of control response charge, but did not activate the receptor in the absence of ACh at up to 3 µM. Bath application of PheTQS (1 µM) mediated an MLA-sensitive potentiation of currents evoked by local ejection of ACh (1 mM) onto CA1 stratum radiatum interneurons in rat hippocampal slices. PheTQS exhibited good brain exposure following oral administration (Brain $C_{\text{max}} = 1540 \,\text{ng/g}$, $10 \,\text{mg/kg}$ p.o.) but had no affect on activity measures up to 32 mg/kg in the rat. PheTQS (30 mg/kg, p.o.) elicited a significant increase in extracellular levels of dopamine in the prefrontal cortex and significantly increased c-Fos immunoreactivity in the central nucleus of the amygdala and the shell of the nucleus accumbens. PheTQS (10 mg/kg, i.v.) enhanced auditory gating in anaesthetised DBA2 mice and this effect was abolished by prior administration of α -bungarotoxin (1.25 nmol, i.c.v.). PheTQS (10 and 30 mg/kg, p.o.) attenuated deficits in pre-pulse inhibition in isolation-reared rats and significantly improved performance in a rat novel object recognition task. Thus, PheTQS is a selective α7 nAChR positive allosteric modulator which exhibits efficacy in rodent sensory gating and cognition models suggesting potential therapeutic utility in psychiatric disorders.

doi:10.1016/j.bcp.2009.06.064

2.14

Dual allosteric modulators of neuronal nicotinic-acetylcholine and GABAA receptors

Kelvin Gee*, Derk Hogenkamp, Tim Johnstone

University of California, Irvine, United States

We have designed a molecule that incorporates selective negative allosteric modulation of GABA_A $\alpha 5$ receptors and positive modulation of $\alpha 7$ neuronal nicotinic receptors (nAChRs). This molecule termed 2-228 represents the first known compound with putative cognition enhancing properties derived from simultaneous modulation of both GABA_A and nAChRs. The research goal is to develop a positive allosteric modulator of $\alpha 7$ nAChRs that